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Abstract—Spatialization displays use a geographic metaphor to arrange non-spatial data. For example, spatializations are 
commonly applied to document collections so that document themes appear as geographic features such as hills. Many common 
spatialization interfaces use a 3-D landscape metaphor to present data. However, it is not clear whether 3-D spatializations afford 
improved speed and accuracy for user tasks compared to similar 2-D spatializations. We describe a user study comparing users’ 
ability to remember dot displays, 2-D landscapes, and 3-D landscapes for two different data densities (500 vs. 1000 points). 
Participants’ visual memory was statistically more accurate when viewing dot displays and 3-D landscapes compared to 2-D 
landscapes. Furthermore, accuracy remembering a spatialization was significantly better overall for denser spatializations. These 
results are of benefit to visualization designers who are contemplating the best ways to present data using spatialization 
techniques. 
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1 INTRODUCTION 
This work empirically demonstrates that two common abstract data 
visualizations, landscapes and contour plots, are not more 
memorable compared to dot displays. Three-dimensional (3-D) 
‘landscape’ displays and two-dimensional (2-D) contour plots or 
‘heat maps’ are popular ways to visualize some types of non-spatial 
data. For example, the Inspire system arranges text articles in a 
terrain-like display to illustrate themes [4, 31]. There has been some 
uncertainty in the field about when these types of visualizations 
improve user performance compared to simpler dot-based displays, 
with prior experiments showing mixed results. 

One challenge with landscape and contour displays is that the 
user must sometimes remember the overall shape of a landscape in 
order to compare it to another version. For instance, Nowell et al. 
[21] report that when landscape views are shown for different time 
slices, users must retain one landscape in memory in order to 
compare it to the next slice and understand how the landscape has 
changed. Although some techniques have been developed to reduce 
memory load when comparing two landscapes [21], comparing more 
than two is more challenging and the memory problem returns. Our 
experiment examined how simple display design decisions impact a 
user’s ability to remember a layout. In particular, we suspected that 
the abstraction provided by landscapes or contour plots would 
improve memorability compared to direct point displays. This 
conjecture turns out to be untrue, as we show later. 

Dot, landscape, and contour displays fall into a class of displays 
called spatializations [10], which show abstract, non-spatial data 
using a geographic metaphor. Document collections are the most 
common use of spatializations. However, spatialization can also be 
applied to multidimensional data such as a table of automobile 
statistics. The spatial arrangement of items in a spatialization is 

typically created through a dimensionality reduction technique such 
as multi-dimensional scaling (MDS) or principle component analysis 
(PCA). These algorithms reduce the high dimensional space to a 
lower dimensionality that can be displayed on a computer screen, 
usually 2-D. Such layouts allow the user to infer the similarity of 
items by observing their spatial distance (the distance-similarity 
metaphor). Research suggests that spatializations promote 
understanding of high dimensional relationships, by enabling users 
to easily see similarities, clusters, and outliers [1, 2, 13].  

Once the 2-D layout of points has been determined, one needs to 
decide how to visually represent the spatialization. A common 
approach is to create a 3-D information landscape by fitting a surface 
to the points. With this approach, coloured ‘hills’ represent peaks of 
the visualized data. Various properties of the data can be mapped to 
the height dimension. For instance, in a collection of documents, the 
height could be used to represent the local point density (i.e. the 
number of documents), or in an automobile dataset, the height may 
represent a data dimension such as fuel economy. Other possible 
representations are a 2-D landscape (where ‘height’ is represented by 
colour and/or contours similar to a topographic map) and coloured 
dots (where no surface is fitted to the points, and data points are 
simply coloured according to the property of interest).  

We present an experiment comparing these different visual 
representations of spatializations. We categorize spatializations into 
two groups based on the graphical mark used to represent data (see 
Figure 1): 

• Dots: Spatializations that show only dots (points). 
• Information Landscapes: Spatializations where a surface has 

been fitted to the set of underlying points. Dots may be shown 
on the surface, and the surface may be flat (2-D) or may vary 
in height (3-D). We refer to these simply as landscapes. 

Our experiment specifically compares 2-D and 3-D landscapes to 
dot-based displays for a memory task. Because landscapes provide 
an abstracted view, we expected them to be easier to remember than 
dot-based displays. A representation that is easier to remember may 
also serve as a better ‘mental map’ of the overall structure. An 
effective mental map could be particularly important in zooming 
interfaces, where the user cannot always see an overview. The 
importance of mental maps in visualization has been known for some 
time (e.g., Misue et al. [18]). More importantly, users often need to 
remember spatializations in order to make mental comparisons and 
understand high-level differences among many different views. 
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1.1 Common Assertions about Landscapes 
Despite the known challenges associated with 3-D displays, such as 
navigation and occlusion, many researchers have proposed using 
landscapes (e.g., [1, 4, 10, 14, 31]). Proponents of landscapes suggest 
several reasons why 2-D and 3-D landscapes may be beneficial. 
Using a landscape metaphor may facilitate pattern recognition and 
spatial reasoning [26].  Information landscapes may avoid problems 
with some dimensions obfuscating others, may simplify the amount 
of data to be presented, and may display data in a way that is optimal 
for information processing [4].  Several authors suggest that the 
landscape metaphor is easily understood by most users and facilitates 
hierarchical clustering of data items [1, 13, 14, 15].  For 3-D 
spatializations, the landscape surface may also provide a constant 
reference to reduce disorientation when navigating in 3-D space [4] 
and to aid depth perception [20]. Of particular interest to our study, 
some researchers postulate that landscapes’ abstraction and spatial 
metaphor make the layout easier to remember, perhaps because it is 
more similar to our everyday world [4]. Whether or not this assertion 
is true is unclear based on prior research. In general, most of these 
assertions about the benefits of information landscapes have not been 
tested empirically. 

1.2 Empirical Knowledge about Graphical Encoding 
and Visual Memory 

Redundantly encoding data using two or more retinal variables has 
been shown to improve perceptual salience and task performance for 
some retinal variables and tasks [3, 22], and is a well-accepted 

design principle. However, it remains unclear whether 3-D 
landscapes that redundantly encode data using height with colour 
have similar benefits. 3-D displays often suffer from occlusion and 
clutter, and can be difficult to interact with. For example, Cockburn 
and McKenzie [7] found that 3-D worlds were more difficult to 
perceive and analyze. For these reasons, redundantly encoding 
information using height plus colour may actually be detrimental. In 
our prior work [28], we found that this was indeed the case for a 
numerosity task with information landscapes. However, we 
suspected that redundant encoding might be helpful for other mental 
operations, particularly visual memory. 

We focus on the mental operation of remembering a 
spatialization’s overall shape. Previous research has compared 2-D 
and 3-D interfaces for memory operations, but for very different 
applications and interface designs. Early studies on document storage 
and retrieval [23] and memory for objects in a hierarchy [27] found 
better performance with 3-D displays compared to 2-D. However, 
more carefully controlled replicates of these experiments found that 
dimensionality made no significant difference [5, 6, 7]. These later 
results suggest that 3-D displays do not improve spatial memory; 
however, it is not clear whether or not these results extend to 2-D 
and 3-D spatializations. Spatializations differ from the 3-D interfaces 
previously studied because the third dimension is used to encode 
data, usually redundantly with other cues such as colour. This 
redundant encoding may provide an additional aid to memory 
beyond the basic 3-D metaphor.  

Other research has shown that users’ ability to recognize objects 
decreases when the scene undergoes transformation such as scaling, 
rotation, or fisheye distortion [9, 17, 25]. Because rotatable 3-D 

   
Dot Display; 500 Points 2-D Landscape; 500 Points  3-D Landscape; 500 Points 

   
Dot Display; 1000 Points  2-D Landscape; 1000 Points 3-D Landscape; 1000 Points 

Figure 1:  Six display types of the user study. All show the same data. Colour saturation represents point density, ranging from  
white (low) to dark green (high). 
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views would likely suffer from these transformation effects, we kept 
all views static in our experiment. 

2 RELATED SPATIALIZATION RESEARCH 
Dot spatializations have been well studied, and research has found 2-
D dot-based displays to be effective for several tasks. Montello et al. 
[19] demonstrated that people naturally equate distance with 
similarity, verifying the distance-similarity metaphor. However, they 
also found that visual illusions and clusters could override the 
distance-similarity metaphor. Hornbæk and Frøkjær [15] reported 
that information retrieval using a 2-D dot display was not more 
effective than using text summaries, but subjects preferred the 
spatialization. By contrast, 3-D dot spatializations have been shown 
to have serious usability problems due to occlusion [4], scene 
complexity [4], depth ambiguity [20], and difficulty of 3-D 
navigation [20]. Direct comparisons of 2-D and 3-D dot 
spatializations [10, 30], have consistently reported better user 
performance with 2-D dots than with 3-D dots. Westerman and 
Cribbin [29] also found that better layout algorithms improved 
performance. For this reason, we do not consider 3-D dot displays in 
our study. 

For landscape spatializations, experiments have reported mixed 
results. Fabrikant [10] demonstrated that people could intuitively 
understand the distance-similarity metaphor, landscape 
representations of non-spatial data, and the relationship between 3-D 
landscapes and the underlying data points. She found that 2-D 
landscapes were usually faster than 3-D landscapes for simple 
distance and density judgment tasks, but that accuracy of some tasks 
was higher with 3-D than 2-D.  She also found that both dots and 
landscapes were quite effective for distance judgment, but dots were 
less effective than landscapes for density judgment. In our prior work 
[28], we found that dots outperformed landscapes for a search and 
dot estimation task, and that 2-D landscapes outperformed 3-D 
landscapes. These mixed results suggest that different 
representations may be suitable for different mental operations, as 
one might expect. Our experiment extends empirical knowledge in 
this area by examining a new mental operation: visual memory.  

Other variations of spatialized displays have also been considered 
empirically. Fabrikant et al. investigated perceptual issues in 
spatializations with graphical links between objects [12] and in 
spatializations similar to choropleth maps [11]. Cribbin and Chen [8] 
demonstrated that visually connecting similar nodes in a dot 
spatialization improved performance at some tasks. We did not 
consider these more specialized types of spatializations in our study. 

3 OUR EXPERIMENT 
We designed an experiment to compare memorability of 2-D 
landscapes, 3-D landscapes, and dot-based spatializations. Our long-
term research objective is to develop guidelines for spatialization 
design by examining how design characteristics influence suitability 
for different low-level mental operations (e.g. mental transformation 
or estimation) and higher-level visualization tasks. In this study, we 
compared three spatialization designs for their ability to support 
mental operations involving visual memory. Visual memory plays an 
important role in higher-level tasks where spatializations need to be 
mentally compared.  

We chose the representations shown in Figure 1 because they 
were the most likely to be effective data display methods. We did not 
consider dots with no colour mapping because they are unable 
encode data outside of spatial position. We also did not consider 3-D 
dots or 2-D landscapes without colour because they have previously 
been shown to be ineffective for many tasks [10]. We chose to use 
colour and height to represent point density (as opposed to data 
values from one dimension). We made this decision because point 
density is commonly represented this way in spatialization interfaces 
and because we felt it was the more conservative choice. Point 
density is redundantly encoded in all of our displays via point 
positions. If any difference in memorability can be found in this 

redundant encoding situation, we would expect the difference to be 
even greater when the redundant encoding is not present. 

In addition to our main factor of display type, we also compared 
two data densities, to determine whether the abstraction provided by 
landscapes provided greater benefit as the number of points 
increased. Based on pilot tests, we chose 1000 points as the larger 
size; with more points the landscapes were too occluded. We then 
chose half this number to be the smaller point size.  Although these 
numbers are small compared to many datasets in use today, we 
believed that in practice larger datasets would be filtered to reduce 
the visible points, or have the points hidden altogether such that only 
an abstracted surface was shown.  

Our displays were designed to include only the most salient 
visual features currently found in spatialization displays. This 
minimalist design enabled us to carefully control differences 
between conditions. Figure 1 illustrates the six displays compared in 
our study. 

We designed our study to answer the following questions: 
• Which are easier to remember: landscapes or dots? 
• In landscapes, does redundantly encoding data using colour 

and height improve memory compared to color alone? 
• How is memory of spatializations influenced by the point 

density in the display? 
 

4 EXPERIMENT DESIGN 
This section describes our experimental design. The main factor of 
display type (Display) had 3 levels: 3-D landscape, 2-D landscape, 
and dots. The secondary factor of data density (Density) had two 
levels: 500 points and 1000 points. Examples of each condition are 
shown in Figure 1. We used a within-subjects design, and order of 
the six conditions was randomized. Measures were response time 
and accuracy. 

4.1 Participants 
Thirty paid participants (11 female, 19 male) were individually 
tested in the study that took approximately 30 minutes to complete. 
Their ages ranged from 18-25 years (M = 21, SD = 2.03). Each 
participant had normal or corrected to normal vision, and was 
required to pass an Ishihara color-blindness test [16] to qualify as a 
participant. Participants were financially compensated for their time. 

4.2 Task 
For each condition, participants performed a two-phase memory 
task. In the first phase (learning), the participant viewed eight images 
successively and was asked to remember them. In the second phase 
(testing), the participant viewed eight images successively, and was 
asked to indicate whether or not each image was present in the 
learning set. Half of the testing phase images were present in the 
training set and half were new. This same experimental method was 
used in previous research on memory of node-link diagrams [17]. 

Learning phase images were each displayed for 12 seconds and 
followed by a 2.5-second blank screen before the next image 
appeared, as in previous work [17]. Participants were warned that 
they would need to recognize these images in the testing phase. 
Testing phase images appeared until the user pressed one of two 
keyboard keys to indicate whether or not the image had been seen 
before. Response times and correctness were recorded. 

4.3 Stimuli 
For each condition, we created twelve images, each based on a 
unique multidimensional dataset. We used real rather than synthetic 
data to ensure the spatializations were realistic. Participants were not 
told anything about the nature of the data. To ensure consistency, we 
used the same data sets for all conditions.  

Two sizes of each dataset were created, one with 1000 points and 
one with 500 points. Each 1000-point set consisted of randomly 
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chosen points from the real data set, and each 500-point dataset was 
a random subset of the 1000-point dataset. The upper data set size 
was chosen to be as large as possible without causing substantial 
occlusion of the landscape surface or other points. These data sets 
were then laid out in 2-D space using the MDSteer system for 
multidimensional scaling [30]. Only one layout of each data set was 
used, to ensure that each display condition showed the same layout. 
Care was taken to ensure that the twelve images for each condition 
could be easily distinguished from one another (i.e., they were not 
too similar). 

Point density was the variable we chose to visually represent, as 
described in section 3. A local density value was calculated for each 
point and displayed graphically using: 

• Dot colour (for dot conditions),  
• Surface colour (for all landscape conditions), and / or  
• Surface height (for 3-D landscape conditions). 
Point density was calculated by (1) dividing the layout canvas 

into square grid cells, (2) totalling the number of points in each grid 
cell, and then (3) smoothing the data by assigning each cell the 
average of itself and its closest neighbours. This result was 
normalized according to the total number of points in the display. 
Low density values appeared as valleys in the 3-D displays and high 
values appeared as peaks. A seven-level saturation colour scale 
represented point density, ranging from white (low density) to dark 
green (high density). 

For dot-based displays, points were directly displayed and were 
assigned a colour based on their density value. For the other displays, 
a graphic surface was created. For 3-D displays, points were first 
moved to a height representing their density value. Points were then 
triangulated to create a surface and the surface was smoothed to 
make it appear like continuous terrain. Contours were extracted at 
interpolated boundaries between density value ranges, and shown 
using colour bands. Points were coloured black in the landscape 
displays. Point colour was chosen to maximize visibility.  These 
color-coding schemes for Dot-based, 2-D landscape, and 3-D 
landscape spatializations were chosen to most closely match likely 
practical implementations of each spatialization. 

Dot-based displays and 2-D landscapes were rendered from a 
bird’s-eye viewpoint and 3-D landscapes were rendered from an 
oblique viewpoint, as shown in Figure 1. The oblique viewpoint was 
chosen to reveal the 3-D nature of the landscape while avoiding 
excessive occlusion of peaks. All images were static. 

The eight learning phase images were randomly selected from the 
twelve possible images. The testing phase showed the remaining four 
images, plus four randomly selected images from the learning phase. 
Images were presented in random order during both phases. 

4.4 Apparatus 
Visual stimuli were created using custom software that was written 
in Java using the Visualization Toolkit [24]. Stimuli were saved as 
static images and presented to participants using DirectRT software. 
Experiments were run using an AMD Athlon 64 bit dual core PC 
running at 2.2 GHz, with 2 GB of RAM and Windows Vista. The 
display was a 21” LCD at 1600 x 1200 resolution with a 32 bit sRGB 
colour mode. Participants interacted with the software using a 
standard keyboard at a desk in a dimmed experiment room. 

4.5 Procedure 
Participants were screened for colour blindness using the Ishihara 
test [16]. The experimenter then introduced the experiment using a 
predefined script, and task instructions were given through a self-
paced slide presentation. Following the instructions, participants 
completed a practice condition. All aspects of this practice condition 
were the same as the actual study conditions, except that the 
spatializations were replaced with images chosen from a set of 12 
fruits (apple, banana, blueberries, cherries, kiwi, melon, nectarine, 
orange, pear, pineapple, starfruit, and strawberries). For the actual 
study, the six experimental conditions were then completed in 
random order. 

5 RESULTS 
Results were analyzed statistically using repeated measures analysis 
of variance (ANOVA) followed by Bonferroni-corrected pairwise 
comparisons. We first performed Q-Q plots to check our data 
distributions. Time data was log transformed so that it fit a normal 
curve. When Mauchly’s Test of Sphericity indicated it was 
necessary, we used the Huynh-Feldt correction. Factors in the 
analysis were display type (3 levels), density (i.e. number of points, 
2 levels), and seen (i.e. whether the images were new or seen in the 
training set, 2 levels). 

Figures 3 and 4 show the response times and accuracy levels in 
different conditions, respectively. Column means for each of the 
conditions are shown on the bars within each figure. Error bars 
represent 95% confidence intervals. 

5.1 Response Time 
We expected most people to answer the yes / no questions quickly in 
all conditions, and were not surprised that most conditions were not 
significantly different in response time. However, we did observe a 
main effect of seen (F(1,29)=20.3, ηp

2=0.41, p<0.001). Participants 
responded significantly faster for images that had been seen in the 
training set compared to images that were new. 

5.2 Accuracy 
For accuracy, we observed significant main effects of display type 
(F(2,58)=7.4, ηp

2=0.2, p<0.002), point density (F(1,29)=14.8, 
ηp

2=0.34, p<0.002), and seen (F(1,29)=14.1, ηp
2=0.33, p<0.002). We 

also observed significant interactions for display × density 
(F(2,58)=4.3, ηp

2=0.13, p<0.019) and display × seen (F(2,58)=3.2, 
ηp

2=0.1, p<0.049). 
Accuracy was significantly better overall when there were more 

points in the display, as shown by the higher green bars in Figure 4. 
Accuracy was also significantly better overall when the image was 
new. In other words, people were better able to recognize that they 
had not seen an image than that they had seen it. Post-hoc tests 
showed that both of these differences occurred for dots (density: 
p<0.001, seen: p<0.027) and 2-D landscapes (density: p<0.008, seen: 
p<0.004), but not for 3-D landscapes. 

Overall, accuracy was 87.1% for dots, 85.3% for 3-D landscapes, 
and 79.1% for 2-D landscapes.  Figure 5 illustrates these overall 
accuracy data. Both dots (p<0.011) and 3-D landscapes (p<0.027) 
had significantly higher accuracy than 2-D landscapes. However, this 
difference did not occur in all conditions, as shown in Table 1. Dots 
also had significantly higher accuracy than 3-D landscapes in the 
1000-point condition. 
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Table 1: Interaction details for display × density and display × seen.  
Mean values and p - values are given for significant differences in 

memory accuracy. 
Condition Dot > 2-D Dot > 3-D 3-D > 2-D 
500 points   Mn Δ% =11.7 

p < .012 
1000 points Mn Δ% =8.2 

p < .004 
Mn Δ% =7.6 
p < .011 

 

Seen image Mn Δ% = 11.5 
p < .021 

 Mn Δ% = 11.4 
p < .017 

New image     

6 DISCUSSION 
We start our discussion by addressing the three key questions raised 
in Section 2: 

Are landscapes or dots easier to remember?  The most 
surprising result from this study was that memory was significantly 
more accurate with dot displays than with the 2-D or 3-D landscapes 
(refer to Figure 5). This contradicted our prediction that the 
abstraction provided by landscape displays would improve 
memorability. During pilot tests, the landscape displays even 
“seemed” easier to remember. Because response times were not 
statistically different between the Dot, 2-D, and 3-D factors, speed / 
accuracy trade-offs are an unlikely explanation for the higher 
accuracies observed for the Dot spatializations. One explanation for 
these results is that the contours and extra features within the 2-D 
and 3-D landscapes may actually be more visually distracting than 
helpful.  Maybe people are able to sufficiently create abstract mental 
representations of Dot clusters without the visual abstractions 
provided by the landscapes.  If such 2-D and 3-D visual landscape 
abstractions differ from a participant’s intuitive visceral mental 
model(s) based on Dot clusters, a slight confusion could occur and 
result in slightly lower accuracy scores. Another possibility is that 
the saturation-based coloring of the dot displays allowed lower 
density regions to fade into the background, producing a clear and 
memorable pattern of high density regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Response times for Dot, 2-D, and 3-D 
spatializations. Error bars show 95% confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Accuracies for Dot, 2-D, and 3-D spatializations. 
Error bars show 95% confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Overall accuracies for Dot, 2-D, and 3-D spatializations. 
Error bars show 95% confidence intervals. 
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Does redundantly encoding data using colour and height 
improve memory compared to colour alone? Because height was 
the only difference between the 2-D and 3-D landscapes presented to 
participants, and the response times were not statistically different 
between the 2-D and 3-D landscapes, our results support this claim.  
The significantly higher accuracy results observed for the 3-D 
landscapes compared to the 2-D landscapes suggest that the 
redundant encoding of height improved memory.   

It is interesting that accuracy was the worst overall with 2-D 
landscapes. If visual distraction was indeed the reason why dot 
displays were easiest to remember, one might expect that 3-D 
landscapes would be the hardest to remember since they present the 
most ‘distracting’ information. One possibility is that there was a 
greater range of brightness values in the 3-D images because of 
shading, which might make the images easier to remember. 
However, this is unlikely since the dot displays (which did not have 
3-D shading information) had the best accuracy overall. Another 
possibility is that the discrete colour bands were distracting but the 
continuous 3-D shape was helpful in some way.  

How is memory of spatialization influenced by the point density 
in the display?  Figure 4 illustrates the significant and consistently 
higher accuracy results for the 1000-point density displays compared 
to the 500-point density displays.   This result was also unexpected. 
Perhaps higher point densities may enable high-level features to 
emerge.  With lower point densities, people may need to focus on a 
collection of smaller details within the displays instead of chunking a 
larger, more unified mental model. This conjecture is consistent with 
the different accuracy results obtained for the 3-D landscapes 
compared to the other conditions (see Figure 4). Specifically, 
accuracy results for the 500 vs. 1000 point densities were much more 
similar for the 3-D landscapes compared to the Dot and 2-D displays. 
Possibly, the height information within the 3-D landscape supports a 
more unified mental model of the data. 

In addition to our three key questions, we were interested to 
observe that participants responded significantly faster to images that 
they had seen before in the training set compared to images that were 
new. Furthermore, for the Dot and 2-D displays, but not the 3-D 
display, participants were significantly more accurate correctly 
rejecting new displays compared to correctly accepting previously 
seen displays.  The timing results are likely due to the extra 
uncertainty for the participants to consider whether a display (i) had 
been shown, but the participant forgot it, vs. (ii) had not been shown, 
and needed to identify it as new. The consistency of 3-D accuracy 
results may suggest that the 3-D displays were better able to provide 
sufficient features for participants to build a mental model of the 
display. 

Considered together with previous work [10, 28], our results 
suggest that dot displays are equal to or superior to landscapes for 
most mental operations that have been studied, with the possible 
exception of density judgment [10]. This result is somewhat 
surprising – one might expect that the abstraction provided by 
landscapes would be useful, particularly for tasks involving memory. 
However, this does not appear to be the case, suggesting that 
designers should generally favour dot displays. If landscapes are to 
be used, preference for 2-D versus 3-D clearly depends on the task. 
While our study showed slight advantages for 3-D landscapes in 
terms of visual memory, studies with other tasks have shown better 
performance for 2-D landscapes [28] or mixed results depending on 
the task [10]. 

7 VISUALIZATION GUIDELINES  
Our results are most relevant to designers of multidimensional 
visualization systems, particularly those involving information 
landscapes. Despite the popularity of 2-D and 3-D landscape 
displays, a growing body of empirical evidence suggests that dot-
based displays may lead to better user performance, at least at many 
important low-level mental operations. Our visual memory results 
confirm the efficacy of dot-based spatializations and refute our prior 

assumptions that 2-D and 3-D landscapes may be better for memory. 
Thus, we recommend that designers consider using dot-based 
spatializations unless there is some compelling reason to use a 
landscape display. One such reason might be user familiarity. For 
example, we are working with environmental simulation researchers 
who are accustomed to viewing contour plots and have been doing so 
for many years. In cases where a landscape display is chosen, we 
recommend that designers carefully consider the mental operations 
most important to the user’s task, and choose their design 
accordingly. In cases where users must frequently hold a landscape 
in memory for comparison with other landscapes, our results suggest 
a 3-D landscape may be better than a 2-D one. 

8 FUTURE WORK 
We did not expect to observe such pronounced differences between 
the 500 and 1000 point densities.  Future work could focus on a user 
study containing a continuum of point densities. One could test for 
optimum densities of points for Dot-based, 2-D, and 3-D 
spatializations, and could also consider which type of display is best 
when the point density is so high that most points are visually 
obscured. Such studies could also compare coloring of points.  For 
example, the study described in this paper had saturation gradient 
points as typically occur on Dot spatializations, and black points as 
typically occur on 2-D and 3-D spatializations. Future studies could 
explicitly compare the influences of these color choices. In addition, 
most research so far has used a bottom-up approach, focusing on 
which visualization techniques are best suited for various low-level 
mental operations. Further research should be done to consider the 
relative importance of these operations in more complex 
visualization tasks. For example, our study examined simple mental 
recall of landscape and dot images. Future work is needed to verify 
whether relative memorability of these displays changes during a 
higher-level data analysis task, where the image is not simply being 
remembered, but also interpreted. 

9 CONCLUSIONS 
We have demonstrated accuracy and timing differences for three 
main types of spatializations:  dot displays, 2-D landscapes, and 3-D 
landscapes. Several useful results were observed that benefit 
visualization designers who are contemplating spatialization 
techniques to convey their data. Surprisingly, dot-displays afforded 
significantly higher accuracy results than 2-D or 3-D landscapes. We 
also observed that redundantly encoding data using colour and height 
in landscapes improved memory compared to colour alone, and that 
users were better able to remember denser spatializations.  Finally, 
we quantified significant differences between a user’s ability to 
correctly recall a spatialization that they had seen before compared to 
a user’s ability to correctly identify a new spatialization.  
Collectively, these results help designers understand how to design 
individual spatializations; and, perhaps more importantly, how users 
are able to remember salient features while context switching 
between multiple different spatializations – a common need when 
analyzing multidimensional datasets. 
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